Product Description

 

Product Description

DIN Standard Industrial Sprocket

Bore

Finished bore, Precossing bore, Taper bore 

Color

Nature steel or black

Standard

ANSI, DIN, ISO

Type

Simplex, Duplex, Triplex

Surface treatment

Black oxide, Zinc plated

Heat treatment

High Frenquency Quenching

Detailed Photos

1.Chain used

HRSY sprocketes are manufactured with a tooth profile and dimensional precision to bring out the maximum performance of the chain you will use.

2. Number of teeth

HRSY sprockets are available with small and large numbers of teeth to match your usage conditions.

Single pitch sprocket

Double pitch sprocket

*Chain matched:35(06C) /06BTeeth:from 9-120

*Chain matched:40(08A) /08BTeeth:from 9-120

*Chain matched:50(10A) /10BTeeth:from 9-120

*Chain matched:60(12A) /12BTeeth:from 9-120

*Chain matched:80(16A) /16B Teeth:from 9-120

*Chain matched:100(20A)/20B Teeth:from 9-120

*Chain matched:120(24A) /24B Teeth:from 9-120

*Chain matched:140(28A) /28B Teeth:from 9-120

*Chain matched:160(32A) /32B Teeth:from 9-120

*Chain matched:200(40A) /40B Teeth:from 9-120

*P=25.4mm Teeth:from 7-100

 

*P=31.8mm Teeth:from 7-100

 

*P=38.1mm Teeth:from 7-100

 

*P=50.8mm Teeth:from 7-100

 

*P=63.5mm Teeth:from 7-100

3. Consturction

A type        B type      C type    SD type

 

4. Material

Carbon Steel, Stainless Steel,Aluminum, Nylon, POM, Copper, Brass,42CrMo,40Cr,A3 and so on.

5. Bore

Pilot bore, finished bore, taper bore, bearing hole and special bore

6. Treatment

Heat Treatment: Hardening and Tempering, High Frequency Quenching, Carburizing Quenching and so on.

 

Surface Treatment: Zinc Plating, Chrome plated, Black oxide Treatment, Spray Paint, Mirror Finish, Sand-blasting and so on.

 

Packaging & Shipping

 

Company Profile

ZheJiang Haorongshengye Electrical Equipment Co., Ltd.

1. Was founded in 2008
2. Our Principle:

“Credibility Supremacy, and Customer First”
3. Our Promise:

“High quality products, and Excellent Service”
4. Our Value:

“Being Honesty, Doing the Best, and Long-lasting Development”
5. Our Aim:

“Develop to be a leader in the power transmission parts industry in the world”
 

6.Our services:

1).Competitive price

2).High quality products

3).OEM service or can customized according to your drawings

4).Reply your inquiry in 24 hours

5).Professional technical team 24 hours online service

6).Provide sample service

Main products

Machines

 

Exbihition

 

/* March 10, 2571 17:59:20 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Nonstandard
Application: Machinery
Hardness: Hardened Tooth Surface
Material: Stainless Steel
Teeth Number: 8-100t
Pitch: 6.35-100mm
Samples:
US$ 100/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

wheel sprocket

Best Lubrication Practices for wheel sprocket Systems

Proper lubrication is essential for maintaining the efficiency and longevity of wheel sprocket systems. The lubrication practices can vary depending on the specific application and the environment in which the system operates. Here are some best practices for lubricating wheel sprocket systems:

  • Cleanliness: Before applying any lubricant, ensure that the wheel sprocket surfaces are clean and free from dirt, debris, and old lubricant residue. Cleaning the components helps prevent contaminants from mixing with the lubricant and causing additional wear.
  • Choose the Right Lubricant: Select a lubricant specifically designed for the wheel sprocket system. Consider factors such as load, speed, temperature, and environmental conditions when choosing the appropriate lubricant. Some systems may require grease, while others may need oil-based lubricants.
  • Apply Adequate Amount: Apply the lubricant in the right quantity to ensure proper coverage of the contacting surfaces. Too little lubricant may not provide sufficient protection, while too much can lead to excess heat and waste.
  • Regular Lubrication Schedule: Establish a maintenance schedule for lubrication based on the operating conditions of the system. In high-demand applications, more frequent lubrication may be necessary to prevent premature wear.
  • Monitor and Reapply: Regularly monitor the condition of the wheel sprocket system and observe any signs of inadequate lubrication, such as increased friction or unusual noise. Reapply lubricant as needed to maintain optimal performance.
  • Re-lubrication After Cleaning: If the wheel sprocket system is cleaned, ensure that fresh lubricant is applied after cleaning to restore the protective layer.
  • Consider Lubrication Type: Depending on the application, consider using dry lubricants or solid lubricants for environments where dust and dirt accumulation may be a concern.

It’s essential to follow the manufacturer’s recommendations and guidelines for lubrication. Additionally, consult with lubrication experts or equipment suppliers for specific recommendations based on your wheel sprocket system’s unique requirements.

wheel sprocket

Using wheel sprocket Assembly in Robotics and Automation

Yes, wheel sprocket assemblies are commonly used in robotics and automation systems to transmit power and facilitate movement. These systems offer several advantages for robotic applications:

  • Efficiency: wheel sprocket assemblies provide efficient power transmission, ensuring smooth and precise movement of robotic components.
  • Compact Design: The compact nature of sprockets and wheels allows for space-saving designs, making them ideal for robotic applications where space is limited.
  • Precision: Sprockets and wheels with accurate teeth profiles provide precise motion control, crucial for robotics and automation tasks that require high levels of accuracy.
  • Low Noise: Properly lubricated and maintained wheel sprocket systems generate minimal noise during operation, contributing to quieter robotic movements.
  • Customizability: wheel sprocket assemblies can be customized to suit specific robotic requirements, such as different gear ratios, sizes, and materials.
  • Multiple Configurations: Depending on the robotic application, different configurations like single or multiple sprockets, idler sprockets, or rack and pinion systems can be used.
  • High Load Capacity: Sprockets made from durable materials like steel can handle substantial loads, making them suitable for heavy-duty robotic tasks.

Examples of robotics and automation systems that commonly use wheel sprocket assemblies include:

  • Robotic Arms: wheel sprocket systems are utilized in robotic arms to control their movement and reach.
  • Automated Guided Vehicles (AGVs): AGVs use wheel sprocket assemblies for propulsion and steering, enabling them to navigate autonomously.
  • Conveyor Systems: In automated factories, conveyor belts are often driven by sprockets and wheels for efficient material handling.
  • Mobile Robots: Wheeled mobile robots use wheel sprocket assemblies to drive their wheels, enabling them to move in various directions.
  • Robot Grippers: wheel sprocket mechanisms can be integrated into robot grippers to facilitate gripping and handling objects.

The choice to use wheel sprocket assemblies in robotics and automation depends on the specific application requirements, load capacity, precision, and environmental conditions. By selecting the appropriate sprockets, wheels, and materials, engineers can ensure reliable and efficient robotic performance in a wide range of automated tasks.

wheel sprocket

How Does a wheel sprocket Assembly Transmit Power?

In a mechanical system, a wheel sprocket assembly is a common method of power transmission, especially when dealing with rotary motion. The process of power transmission through a wheel sprocket assembly involves the following steps:

1. Input Source:

The power transmission process begins with an input source, such as an electric motor, engine, or human effort. This input source provides the necessary rotational force (torque) to drive the system.

2. Wheel Rotation:

When the input source applies rotational force to the wheel, it starts to rotate around its central axis (axle). The wheel’s design and material properties are essential to withstand the applied load and facilitate smooth rotation.

3. Sprocket Engagement:

Connected to the wheel is a sprocket, which is a toothed wheel designed to mesh with a chain. When the wheel rotates, the sprocket’s teeth engage with the links of the chain, creating a positive drive system.

4. Chain Rotation:

As the sprocket engages with the chain, the rotational force is transferred to the chain. The chain’s links transmit this rotational motion along its length.

5. Driven Component:

The other end of the chain is connected to a driven sprocket, which is attached to the component that needs to be powered or driven. This driven component could be another wheel, a conveyor belt, or any other machine part requiring motion.

6. Power Transmission:

As the chain rotates due to the engagement with the sprocket, the driven sprocket also starts to rotate, transferring the rotational force to the driven component. The driven component now receives the power and motion from the input source via the wheel, sprocket, and chain assembly.

7. Output and Operation:

The driven component performs its intended function based on the received power and motion. For example, in a bicycle, the chain and sprocket assembly transmit power from the rider’s pedaling to the rear wheel, propelling the bicycle forward.

Overall, a wheel sprocket assembly is an efficient and reliable method of power transmission, commonly used in various applications, including bicycles, motorcycles, industrial machinery, and conveyor systems.

China OEM Double Sprocket for Two Single Roller Chain  China OEM Double Sprocket for Two Single Roller Chain
editor by CX 2024-02-26