Product Description

 

Product Description

American standard chain sprocket with teeth hardened

With more than 15 years’ experience, high-precision equipment and strict management system, CIMO can provide sprockets for you with stable quality and best service.
 

Item Sprocket
Standard DIN, KANA, ANSI, ISO, etc
Material C45, stainless steel SS304 & SS316, Cast iron, etc
Bore Pilot bore, finished bore, taper bore
Surface Treatment Black oxided, Zinc plated, Electrophoresis, etc
Heat treatment Teeth inductive hardened HRC45-50
Process Forging, Cutting, Hobbing teeth, CNC Lathe machining

 

European Type 03B, 04B, 05B, 06B, 081B, 083B/084B, 085B, 086B, 08B, 10B, 12B, 16B, 20B, 24B, 28B, 32B
American Type 25, 35, 40, 50, 60, 80, 100, 120, 140, 160, 200, 240

Taper bore sprockets

 
Finished bore sprockets  

Idler sprockets with ball bearing

 

Double simplex sprockets

 

Sprockets with split taper bushings

 

Sprockets with QD bushings

 
Double sprockets for 2 single chains  

Double pitch sprockets   

C2042, C2052, C2062, C2082, C2040, C2050, C2060, C2080
Platewheels for Conveyor chain 20x16mm, 30×17.02mm

Detailed Photos

 

Workshop

 

 

Packaging & Shipping

 

Export wooden box

FAQ

 

Q1: Are you trading company or manufacturer ?
A: We are factory.

Q2: How long is your delivery time and shipment?
1.Sample Lead-times: 10-20 days
2.Production Lead-times: 30-45 days after order confirmed.

Q3: What is your advantages?
1. The most competitive price and good quality.
2. Perfect technical engineers give you the best support.
3. OEM is available.

 

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Standard Or Nonstandard: Nonstandard
Application: Motor, Electric Cars, Motorcycle, Machinery, Agricultural Machinery, Chain
Hardness: Hardened Tooth Surface
Manufacturing Method: Cut Gear
Toothed Portion Shape: Sprocket
Material: Steel C45
Customization:
Available

|

Customized Request

wheel sprocket

Calculating Torque Requirements for a wheel sprocket Assembly

Calculating the torque requirements for a wheel sprocket assembly involves considering various factors that contribute to the torque load. The torque requirement is crucial for selecting the appropriate motor or power source to drive the system effectively. Here’s a step-by-step guide:

  1. 1. Determine the Load Torque: Identify the torque required to overcome the resistance or load in the system. This includes the torque needed to move the load, overcome friction, and accelerate the load if applicable.
  2. 2. Identify the Sprocket Radius: Measure the radius of the sprocket (distance from the center of the sprocket to the point of contact with the chain or belt).
  3. 3. Calculate the Tension in the Chain or Belt: If using a chain or belt drive, calculate the tension in the chain or belt. Tension affects the torque required for power transmission.
  4. 4. Account for Efficiency Losses: Consider the efficiency of the system. Not all the input power will be converted into output power due to friction and other losses. Account for this efficiency in your calculations.
  5. 5. Use the Torque Equation: The torque (T) can be calculated using the following equation:
    T = (Load Torque × Sprocket Radius) ÷ (Efficiency × Tension)

It’s essential to use consistent units of measurement (e.g., Newton meters or foot-pounds) for all values in the equation.

Remember that real-world conditions may vary, and it’s advisable to add a safety factor to your calculated torque requirements to ensure the system can handle unexpected peak loads or variations in operating conditions.

wheel sprocket

Load-Carrying Capacities of wheel sprocket Combinations

The load-carrying capacity of a wheel sprocket assembly depends on various factors, including the material, size, and design of both the wheel sprocket. Here are some common types of wheel sprocket combinations and their load-carrying capacities:

  • Steel Wheel with Steel Sprocket: This combination offers high load-carrying capacity and is commonly used in heavy-duty applications. Steel wheels can handle substantial loads, and when paired with steel sprockets, the assembly can withstand even higher forces.
  • Nylon Wheel with Steel Sprocket: Nylon wheels are known for their lightweight and durable nature. When combined with steel sprockets, they provide a good load-carrying capacity while reducing the overall weight of the assembly.
  • Polyurethane Wheel with Steel Sprocket: Polyurethane wheels offer excellent wear resistance and are suitable for medium to heavy loads. When paired with steel sprockets, this combination can handle moderate to high load capacities.
  • Rubber Wheel with Cast Iron Sprocket: Rubber wheels are known for their shock-absorbing properties and are often used in applications requiring vibration dampening. When used with cast iron sprockets, this combination can handle medium loads.
  • Plastic Wheel with Plastic Sprocket: This combination is suitable for light-duty applications where lower loads are expected. Plastic wheels and sprockets are often used in applications that require low friction and quiet operation.
  • Custom wheel sprocket Combinations: In some cases, custom wheel sprocket combinations are designed to meet specific load-carrying requirements. These combinations can be tailored to suit the application’s unique demands.

It’s important to note that load-carrying capacities also depend on other factors, such as the type of bearing used in the wheel, the shaft material, and the overall design of the mechanical system. Engineers should carefully consider the intended application, operating conditions, and safety factors when selecting the appropriate wheel sprocket combination to ensure optimal performance and longevity of the system.

wheel sprocket

Can a wheel sprocket System be Used in Bicycles and Other Vehicles?

Yes, a wheel sprocket system is commonly used in bicycles and various other vehicles. In bicycles, the wheel sprocket system is a fundamental part of the drivetrain, which transfers power from the rider’s legs to the wheels, propelling the bicycle forward.

The typical bicycle drivetrain consists of a chain, front sprockets (chainrings), rear sprockets (cassette), and the bicycle’s wheels. When the rider pedals the bicycle, the chain engages with the sprockets, and as a result, the rotational motion from the pedaling is transferred to the rear wheel.

The selection of sprocket sizes (number of teeth on chainrings and cassette) can affect the gear ratio, allowing cyclists to adjust their pedaling effort and speed to suit different terrains and riding conditions. Smaller sprockets provide easier pedaling for climbing steep hills, while larger sprockets offer higher speeds on flat or downhill sections.

Beyond bicycles, the wheel sprocket system is widely used in various other vehicles and machinery to transmit power and control speed. It can be found in motorcycles, mopeds, electric scooters, and even some small electric vehicles. Additionally, the wheel sprocket system is prevalent in industrial machinery, where precise speed control and torque transmission are essential.

The efficiency and reliability of the wheel sprocket system make it a versatile and practical choice for many vehicles and mechanical applications.

China Hot selling Zinc Plated Electrogalvanized Galvanized Black Oxide Roller Chain Sprocket  China Hot selling Zinc Plated Electrogalvanized Galvanized Black Oxide Roller Chain Sprocket
editor by CX 2024-02-28